MATHEMATICS 0054 (Analytical Dynamics) YEAR 2023–2024, TERM 2

PROBLEM SET #7 (last one!!!)

This problem set is due at the *beginning* of the *afternoon* lecture on Monday 18 March.

Topics: Hamiltonian approach to mechanics: phase space, Hamilton's equations, Liouville's theorem, Poisson brackets.

Reading:

- Gregory, *Classical Mechanics*, Chapter 14 (handout).
- Handout #12: The Hamiltonian approach to mechanics.
- 1. Spherical pendulum. A particle of mass m is attached to a massless inextensible string of length ℓ and hung from the ceiling in a uniform gravitational field g. The pendulum is free to move in three dimensions, i.e. not necessarily in a fixed plane. Use spherical coordinates with the north pole pointing downwards, i.e. θ is the angle that the string makes with the vertical, and φ is the azimuthal angle.
 - (a) Using the generalized coordinates (θ, φ) , find the Lagrangian and Lagrange's equations of motion. Identify any cyclic coordinates and interpret the conserved conjugate momenta.
 - (b) Find the Hamiltonian and Hamilton's equations of motion. Once again identify any cyclic coordinates and interpret the conserved conjugate momenta.

2. [An old friend: See Problem 3 of Problem Set #5]

A smooth thin wire is bent into the shape of a parabola, $z = x^2/2a$, and is made to rotate with angular velocity ω about the z axis [i.e. about the point x = 0 on the wire]; here the +z direction is of course oriented upwards. A bead of mass m then slides frictionlessly on the wire under the influence of gravity. Use cylindrical coordinates (r, φ, z) .

Find the Lagrangian in terms of the generalized coordinate r, and then find the Hamiltonian. Is H equal to the total energy? Is H conserved?

3. Consider a free particle in a curvilinear coordinate system $\{q_{\alpha}\}$. The Lagrangian is L = T, and the Lagrange equations of motion are

$$\dot{p}_{\alpha} = \frac{\partial T}{\partial q_{\alpha}}$$

The Hamiltonian is H = T, and the Hamilton equations of motion are

$$\dot{p}_{\alpha} = -\frac{\partial T}{\partial q_{\alpha}}$$

How are these two formulae for \dot{p}_{α} to be reconciled? Illustrate your answer by considering the case of plane polar coordinates.

4. [Another old friend: See Problem 3 of Problem Set #6]

Recall that the Lagrangian for a particle with electric charge e moving in an electromagnetic field is

$$L(\mathbf{r}, \dot{\mathbf{r}}, t) = \frac{1}{2}m\dot{\mathbf{r}}^2 - e\,\varphi(\mathbf{r}, t) + e\,\dot{\mathbf{r}}\cdot\mathbf{A}(\mathbf{r}, t)$$

where $\mathbf{A}(\mathbf{r}, t)$ is the vector potential and $\varphi(\mathbf{r}, t)$ is the scalar potential.

- (a) Find the conjugate momentum **p** in terms of the positions and velocities. Is **p** the ordinary linear momentum?
- (b) Find the Hamiltonian $H(\mathbf{r}, \mathbf{p}, t)$.
- (c) Find Hamilton's equations of motion, and show that they are equivalent to Lagrange's equations of motion.
- (d) Under what circumstances is H conserved?
- 5. Let $\boldsymbol{q} = (q_1, \ldots, q_n)$ and $\boldsymbol{p} = (p_1, \ldots, p_n)$ be canonical coordinates. Recall that the Poisson bracket of two functions $f(\boldsymbol{q}, \boldsymbol{p})$ and $g(\boldsymbol{q}, \boldsymbol{p})$ is defined as

$$\{f,g\} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j} \right)$$

(a) Show that the Poisson bracket satisfies $\{fg,h\} = f\{g,h\} + \{f,h\}g$ for any three functions f(q, p), g(q, p), h(q, p).

For the remainder of this problem, suppose that $\boldsymbol{q} = (q_1, q_2, q_3)$ are Cartesian coordinates for a single particle, and that $\boldsymbol{p} = (p_1, p_2, p_3)$ is the particle's momentum.

(b) Express the angular momentum **L** in terms of \boldsymbol{q} and \boldsymbol{p} , and compute the Poisson brackets $\{q_i, L_j\}$ and $\{p_i, L_j\}$. You may wish to express your answers in terms of the antisymmetric symbol ϵ_{ijk} , defined as

$$\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = +1$$

 $\epsilon_{132} = \epsilon_{321} = \epsilon_{213} = -1$
 $\epsilon_{ijk} = 0$ if i, j, k are not all distinct

- (c) Show that $\{L_i, L_j\} = \sum_{k=1}^{3} \epsilon_{ijk}L_k$, and write out explicitly what this means in terms of L_1, L_2, L_3 . [*Hint*: The identity $\sum_{i=1}^{3} \epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} \delta_{jm}\delta_{kl}$ may be useful. Can you prove it?] [*Remark*: In formulae like these, it is often convenient to use the **Einstein summation convention**, which says that repeated indices are automatically summed (in this case from 1 to 3). So this identity would be written simply as $\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} \delta_{jm}\delta_{kl}$, and the equation we want to prove would be written as $\{L_i, L_j\} = \epsilon_{ijk}L_k$.]
- (d) Show that $\{L_i, |\mathbf{L}|^2\} = 0.$