
MATHEMATICS 0054 (Analytical Dynamics)
YEAR 2023–2024, TERM 2

PROBLEM SET #7 (last one!!!)

This problem set is due at the beginning of the afternoon lecture on Monday
18 March.

Topics: Hamiltonian approach to mechanics: phase space, Hamilton’s equations, Liouville’s
theorem, Poisson brackets.

Reading:

• Gregory, Classical Mechanics , Chapter 14 (handout).

• Handout #12: The Hamiltonian approach to mechanics.

1. Spherical pendulum. A particle of mass m is attached to a massless inextensible string
of length ℓ and hung from the ceiling in a uniform gravitational field g. The pendulum
is free to move in three dimensions, i.e. not necessarily in a fixed plane. Use spherical
coordinates with the north pole pointing downwards, i.e. θ is the angle that the string
makes with the vertical, and φ is the azimuthal angle.

(a) Using the generalized coordinates (θ, φ), find the Lagrangian and Lagrange’s equa-
tions of motion. Identify any cyclic coordinates and interpret the conserved con-
jugate momenta.

(b) Find the Hamiltonian and Hamilton’s equations of motion. Once again identify
any cyclic coordinates and interpret the conserved conjugate momenta.

2. [An old friend: See Problem 3 of Problem Set #5]

A smooth thin wire is bent into the shape of a parabola, z = x2/2a, and is made to
rotate with angular velocity ω about the z axis [i.e. about the point x = 0 on the wire];
here the +z direction is of course oriented upwards. A bead of mass m then slides
frictionlessly on the wire under the influence of gravity. Use cylindrical coordinates
(r, φ, z).

Find the Lagrangian in terms of the generalized coordinate r, and then find the
Hamiltonian. Is H equal to the total energy? Is H conserved?
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3. Consider a free particle in a curvilinear coordinate system {qα}. The Lagrangian is
L = T , and the Lagrange equations of motion are

ṗα =
∂T

∂qα
.

The Hamiltonian is H = T , and the Hamilton equations of motion are

ṗα = − ∂T

∂qα
.

How are these two formulae for ṗα to be reconciled? Illustrate your answer by consid-
ering the case of plane polar coordinates.

4. [Another old friend: See Problem 3 of Problem Set #6]

Recall that the Lagrangian for a particle with electric charge e moving in an electro-
magnetic field is

L(r, ṙ, t) =
1

2
mṙ2 − e φ(r, t) + e ṙ ·A(r, t)

where A(r, t) is the vector potential and φ(r, t) is the scalar potential.

(a) Find the conjugate momentum p in terms of the positions and velocities. Is p
the ordinary linear momentum?

(b) Find the Hamiltonian H(r,p, t).

(c) Find Hamilton’s equations of motion, and show that they are equivalent to La-
grange’s equations of motion.

(d) Under what circumstances is H conserved?

5. Let q = (q1, . . . , qn) and p = (p1, . . . , pn) be canonical coordinates. Recall that the
Poisson bracket of two functions f(q,p) and g(q,p) is defined as

{f, g} =
n∑

j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)
.

(a) Show that the Poisson bracket satisfies {fg, h} = f{g, h}+ {f, h}g for any three
functions f(q,p), g(q,p), h(q,p).

For the remainder of this problem, suppose that q = (q1, q2, q3) are Cartesian coordi-
nates for a single particle, and that p = (p1, p2, p3) is the particle’s momentum.

(b) Express the angular momentum L in terms of q and p, and compute the Poisson
brackets {qi, Lj} and {pi, Lj}. You may wish to express your answers in terms of
the antisymmetric symbol ϵijk, defined as

ϵ123 = ϵ231 = ϵ312 = +1

ϵ132 = ϵ321 = ϵ213 = −1

ϵijk = 0 if i, j, k are not all distinct
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(c) Show that {Li, Lj} =
3∑

k=1

ϵijkLk, and write out explicitly what this means in

terms of L1, L2, L3. [Hint : The identity
3∑

i=1

ϵijkϵilm = δjlδkm − δjmδkl may be

useful. Can you prove it?] [Remark : In formulae like these, it is often convenient
to use the Einstein summation convention, which says that repeated indices
are automatically summed (in this case from 1 to 3). So this identity would be
written simply as ϵijkϵilm = δjlδkm − δjmδkl, and the equation we want to prove
would be written as {Li, Lj} = ϵijkLk.]

(d) Show that {Li, |L|2} = 0.
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