MATHEMATICS 0054 (Analytical Dynamics)

YEAR 2023-2024, TERM 2

PROBLEM SET \#6

This problem set is due at the beginning of lecture on Thursday 7 March.

Topics: Lagrangian approach to mechanics, continued: Symmetries and conservation laws. Variational principles.

Reading:

- Gregory, Classical Mechanics, Chapter 12 (handout).
- Handout \#11: The Lagrangian approach to mechanics.
- Feynman, The Feynman Lectures on Physics, volume 2, Chapter 19 (handout).
- Gregory, Classical Mechanics, Chapter 13 (handout).

1. [An old friend: See Problem 3 of Problem Set \#3]

A double pendulum consists of rigid massless rods of lengths ℓ_{1} and ℓ_{2} and particles of mass m_{1} and m_{2}, respectively, attached as in the diagram. (All pivots are frictionless, of course.)

(a) Find the Lagrangian for the system, using as generalized coordinates the angles θ_{1} and θ_{2}.
(b) Find the exact equations of motion for the system, using the Lagrangian. Do the equations of motion agree with those found by Newtonian methods in Problem Set \#3?
2. Let $F(\boldsymbol{q}, t)$ be an arbitrary function of the coordinates $\boldsymbol{q}=\left(q_{1}, \ldots, q_{n}\right)$ and the time (but not of the velocities).
(a) Show that the Lagrangian $L^{\prime}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \equiv L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t)+\frac{d}{d t} F(\boldsymbol{q}, t)$ leads to the same equations of motion as does the Lagrangian L. [Hint: There are at least two ways of doing this problem. There is a very easy proof using the variational principle; or you can prove it directly by grinding out the derivatives.]

Remark: Such a change of Lagrangian is occasionally called a "(Lagrangian) gauge transformation"; though $L^{\prime} \neq L$, the two Lagrangians are physically equivalent, as they lead to the same dynamics.
(b) Can this be generalized to permit F to depend on the $\dot{\boldsymbol{q}}$ as well?
[There is a partial converse to this theorem: If the Lagrange equations for L and L^{\prime} are formally identical - that is, if

$$
\Lambda_{i}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}, t) \stackrel{\text { def }}{=} \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial q_{j}} \dot{q}_{j}+\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial \dot{q}_{j}} \ddot{q}_{j}+\frac{\partial^{2} L}{\partial \dot{q}_{i} \partial t}-\frac{\partial L}{\partial q_{i}}
$$

is the same function of the $\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}$ and t as is the analogously defined $\Lambda_{i}^{\prime}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}, t)$ - then $L^{\prime}(\boldsymbol{q}, \dot{\boldsymbol{q}}, t) \equiv L(\boldsymbol{q}, \dot{\boldsymbol{q}}, t)+\frac{d}{d t} F(\boldsymbol{q}, t)$ for some function $F(\boldsymbol{q}, t)$. For a proof, see Saletan + Cromer, Theoretical Mechanics, pp. 40-41.]
3. (a) Show that the Lagrangian function

$$
L(\mathbf{r}, \dot{\mathbf{r}}, t)=\frac{1}{2} m \dot{\mathbf{r}}^{2}-e \varphi(\mathbf{r}, t)+e \dot{\mathbf{r}} \cdot \mathbf{A}(\mathbf{r}, t)
$$

yields the correct equation of motion for a particle with electric charge e moving in an electromagnetic field, namely

$$
m \ddot{\mathbf{r}}=e(\mathbf{E}+\dot{\mathbf{r}} \times \mathbf{B})
$$

where

$$
\begin{aligned}
& \mathbf{E}=-\nabla \varphi-\frac{\partial \mathbf{A}}{\partial t} \\
& \mathbf{B}=\nabla \times \mathbf{A}
\end{aligned}
$$

are the electric and magnetic fields, respectively. [The vector field \mathbf{A} is called the vector potential, and the scalar field φ is called the scalar potential. Both A and φ may be functions of x, y, z and t.]
(b) Show that when the potentials of the electromagnetic field are subjected to an "(electromagnetic) gauge transformation"

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{A}^{\prime} \\
& \equiv \mathbf{A}+\nabla \psi \\
& \varphi \rightarrow \varphi^{\prime}
\end{aligned}>\varphi-\frac{\partial \psi}{\partial t}, ~ l
$$

where $\psi(\mathbf{r}, t)$ is an arbitrary function, the electromagnetic field \mathbf{E} and \mathbf{B} they describe do not change.
(c) Determine how the Lagrangian changes if we replace φ by φ^{\prime} and \mathbf{A} by \mathbf{A}^{\prime}. How is it that the equations of motion are unchanged, despite the fact that $L^{\prime} \neq L$? (Compare to the preceding problem!)
4. A particle is subject to a constant force \mathbf{F}.
(a) Show the Newtonian equations of motion are invariant under spatial translation $\mathbf{r} \mapsto \mathbf{r}^{\prime} \equiv \mathbf{r}+\mathbf{e}$, where \mathbf{e} is an arbitrary constant vector.
(b) What does the transformation $\mathbf{r} \mapsto \mathbf{r}^{\prime} \equiv \mathbf{r}+\mathbf{e}$ do to the Lagrangian?
(c) Find the conserved quantity associated with this symmetry by Noether's theorem. What does it express physically?

Moral: While translation-invariance of the dynamical law always implies (for a Lagrangian system) the existence of a conserved quantity, that quantity is not always linear momentum.
5. Consider a system of N point-particles interacting through a potential that depends only on the differences between particle positions, i.e. $V=V\left(\mathbf{r}_{2}-\mathbf{r}_{1}, \mathbf{r}_{3}-\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}-\mathbf{r}_{1}\right)$.
(a) Show that the equations of motion are invariant under a "Galilean boost" with velocity \mathbf{u}, that is, the transformation $\mathbf{r}_{i} \mapsto \mathbf{r}_{i}^{\prime} \equiv \mathbf{r}_{i}+\mathbf{u}$. [Cf. the discussion of Galileo's Principle of Relativity in Handout \#1.]
(b) How does the Lagrangian change under a Galilean boost? Show that L is not invariant, but rather undergoes a "(Lagrangian) gauge transformation"

$$
L\left(\mathbf{r}^{\prime}, \dot{\mathbf{r}}^{\prime}\right)=L(\mathbf{r}, \dot{\mathbf{r}})+\frac{d}{d t} F(\mathbf{r}, t)
$$

and find the function $F(\mathbf{r}, t)$.
(c) Find the constant of motion guaranteed by part (b) and Noether's theorem. What does it express physically?

