
MATHEMATICS 0054 (Analytical Dynamics)
YEAR 2023–2024, TERM 2

PROBLEM SET #2

This problem set is due at the beginning of the afternoon class on Monday
29 January.

Topics:

• Solvable cases of one-dimensional motion.

• Systems of particles and conservation laws: linear momentum, angular momentum,
energy (internal and external potentials).

• Coupled oscillations and normal modes. Standing waves on a linear chain. [Next week
I will give you problems on coupled oscillations.]

Readings:

• Handout #5: Solvable cases of one-dimensional motion.

• Handout #6: Momentum, angular momentum, and energy; conservation laws.

• Handout #8: Coupled oscillations and normal modes.

Warning: This problem set is rather long, and the problems are challenging; I urge you to
get started early and give yourself enough time!

1. Consider a particle with initial velocity v0 > 0, subject only to the retarding force
F = −kv|v|n−1 with k, n > 0. Find v(t) and x(t), and investigate the behavior of v
and x as t → +∞. It will turn out (but you have to prove this!) that there are three
cases:

(a) For a certain interval of small n, the particle comes to rest after a finite time, and
thus has travelled a finite distance.

(b) For a certain interval of intermediate n, the particle comes to rest only asymp-
totically as t → +∞, but the distance it travels as t → +∞ is finite.

(c) For a certain interval of large n, the particle comes to rest only asymptotically as
t → +∞, and it travels an infinite distance as t → +∞.
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Prove this scenario, find the values of n that form the dividing lines between these
three cases, and put the dividing-line values of n into the correct cases.

2. An open railway car of mass M rolls frictionlessly on a horizontal track, and is acted
upon by a constant horizontal force F0. At t = 0 the car has velocity v0, and rain
begins to fall vertically with respect to the ground. Rainwater enters the car at a
constant rate α (mass/time) and leaks out through a small hole in the bottom of the
car at a constant rate β, with α > β.

(a) Find the equation of motion of the car — that is, find a differential equation
for the car’s velocity v(t). [Hint: Look at the same collection of particles (the
“system”) at two nearby times, t and t + ∆t, and write that the rate of change
of the system’s total momentum equals the total external force on the system.]
[Remark: Note that this equation does not depend on α and β only through the
combination α − β, as one might naively expect. That is because there is a real
physical difference between the water entering the car and the water leaking out
of the car — can you see what this difference is?]

(b) Solve this equation to find the velocity as a function of time.

3. A uniform heavy chain of length a is partly sitting on a table, partly hanging down
over the edge. Initially a part of length b (< a) hangs over the edge (with zero initial
velocity), while the remaining part of length a− b is coiled up at the edge of the table.

(a) Find the equation of motion for the amount x(t) hanging over the edge.

(b) Solve this equation to find the chain’s speed v as a function of x, and in particular
to find the chain’s speed vfinal when the last link leaves the edge of the table. [Hint:
dv
dt

= dv
dx

dx
dt
.]

(c) Use your solution to compute the kinetic and potential energies as a function of
x. Is the total energy (kinetic + potential) conserved, gained or lost? Explain
physically. [Remark: The physical explanation is a bit subtle.]

Same problem, but this time the part of the chain sitting on the table is stretched out
to its full length in the direction perpendicular to the edge of the table. The table is
frictionless.

(d) Find the equation of motion for the amount x(t) hanging over the edge.

(e) Solve this equation to find the chain’s speed v as a function of x, and in particular
to find the chain’s speed vfinal when the last link leaves the edge of the table.

(f) Use your solution to compute the kinetic and potential energies as a function of
x. Is the total energy (kinetic + potential) conserved, gained or lost? Explain
physically.

4. And now for the famous problem of a raindrop falling through mist, collecting mass as
it falls. Suppose that at time t the raindrop has a mass m(t) and a downward velocity
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v(t). First we need to find a pair of coupled differential equations for the two unknown
functions m(t) and v(t); then we need to solve them.

The first differential equation is the Newtonian equation of motion for the raindrop:

(a) Derive the Newtonian equation of motion by looking at the same collection of
water particles (the “system”) at two nearby times, t and t+∆t, and writing that
the rate of change of the system’s total momentum equals the total external force
on the system.

The second differential equation states the hypothesized law of accretion for the rain-
drop, and we will consider two versions:

(b) Assume that the raindrop remains spherical and that the rate of accretion of mass
is proportional to the drop’s surface area. Write the equation for dm/dt that this
implies. Then solve the system of two coupled differential equations, assuming
that the drop starts from rest when it is infinitely small; show that its acceleration
is constant and is equal to g/4.

(c) Assume that the raindrop remains spherical and that the rate of accretion of mass
is proportional to the volume swept out as it falls (i.e. is proportional to the drop’s
cross-sectional area multiplied by its speed of fall). Write the equation for dm/dt
that this implies. Then solve the system of two coupled differential equations,
assuming that the drop starts from rest when it is infinitely small; show that its
acceleration is constant and is equal to g/7.

[Comment: (b) is fairly straightforward, because the rate of accretion dm/dt depends
only on m, not on v; therefore you can first solve the accretion equation to find m(t),
then plug this in to the Newtonian equation of motion to find v(t). But (c) is really
tricky, because the two equations are coupled! Hint for decoupling them: Temporarily
consider m to be the independent variable instead of t; find and solve a differential
equation for the unknown function v(m). Then use this to find v(t).]
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